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Dispersion modeling is an important decision tool for estimating the impact of human activities on the
environment and its populations. However, it was proved by researchers that AERMOD and CALPUFF, the
current regulatory models, do not account for the effect of averaging time. In consequence, these models
do not have the ability to predict short-term time peak concentrations. This inability arises from the
errors in the lateral and vertical dispersion estimates, which are reliable only to predict 10 min or longer
average concentrations. In this paper, a novel evaluation based on Irwin (1983) was conducted to
investigate the effect of averaging time on the lateral dispersion and maximum concentration estimates.
The Pasquill-Gifford, H€ogstr€om, Draxler (embedded in CALPUFF) and AERMOD lateral dispersion
schemes were tested using the Round Hill II experiment, developed to investigate the effects of averaging
time on atmospheric transport and diffusion. The observed lateral dispersion was derived from the
lateral concentration profiles along 3 sampling arcs (50, 100 and 200 m), measured on 3 different
averaging times (0.5; 3 and 10 min). The observed lateral dispersion was compared to those estimates.
The results of the comparison show that AERMOD and Draxler correlate better with measured data than
the PG and H€ogstr€om methods. However, their estimates are biased and the magnitude of systematic
errors tends to grow as the averaging time decreases. Moreover, AERMOD and Draxler, with Peak-to-
Mean (P-M) adjustment, tend to overestimate the lateral dispersion farther from the source and un-
derestimate at downwind distances less than 200 m. The analysis also highlights some concerns on the
P-M ratio application due its subjectivity. The present investigation on the effect of short-term averaging
times on atmospheric transport and diffusion may help to understand some issues related to the use of
dispersion models in the case of flammability, malodor nuisance and toxicity
Copyright © 2015 Turkish National Committee for Air Pollution Research and Control. Production and

hosting by Elsevier B.V. All rights reserved.
1. Introduction

Dispersion models have been frequently used in air pollution
problems to determine the concentration of contaminants down-
wind from a continuous point source (Draxler, 1976). However,
most of the Gaussian and Puff models including Industrial Source
Complex 3 (ISC3), AERMOD and CALPUFF, the most used and rec-
ommended models by the US EPA, are unable to predict short-term
peak concentrations. Several applications require estimates of
concentrations averaged over shorter time periods that those
estimated with models commonly used for regulatory applications,
aski), d.franco.ocean@gmail.
.
ational Committee for Air

ittee for Air Pollution Research an
such as AERMOD and CALPUFF. For example, predicting odor con-
centrations requires converting AERMOD 1 h estimates to values
that correspond to averaging times of a few seconds to fewminutes
(Venkatram, 2002). According to several researchers, a lack of
agreement has been found between the estimated and observed
downwind concentrations using these models on shorter averaging
times (Beaman, 1988). In fact, those models were not designed to
predict short-term peak concentrations.

The widely used Gaussian approximations were calibrated from
historical tracer dispersion experiments, with averaging times of
10 min or longer (Irwin et al., 2007). Therefore, estimates are only
reliable under these respective temporal scales. Common practice
consists of converting model predicted estimates to shorter time
periods using Peak-to-Mean (P-M) formula presented on Equation
(1) (Dourado et al., 2012; Venkatram, 2002; Vieira de Melo et al.,
2012; Wang et al., 2006).
d Control. Production and hosting by Elsevier B.V. All rights reserved.
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This expression relates the maximum mean concentration (Cp)
observed for a shorter averaging period (tp) and the maximum
mean concentration (Cm) observed for a longer averaging period
(tm), which is the mean concentration calculated by the model. The
values of the exponent, c, in the literature range from 0.2 to 0.5
(Venkatram, 2002), depending on atmospheric stability
(Schauberger et al., 2012).

For shorter averaging times, ISC3, AERMOD and CALPUFF
require P-M conversion due to the sum of the effects of dispersion
and change in the axis of the plume (meandering), which are
considered as absolute dispersion in their estimates. These effects
are caused by different turbulent scales, which are virtually indis-
tinguishable, except that only the relative diffusion of the plume
around its instantaneous centroid is responsible for the effective
dilution of pollutants. Plume meandering is the slow lateral back-
and-forth shifting of a plume in response to nondispersing lateral
eddies that are larger than the plume (Cimorelli et al., 2005). The
more the averaging time increases and the distance from the source
to the receptor decreases, the more important the meandering
influence on the lateral dispersion is. Meandering tends to disap-
pear over longer averaging times and farther from the source, and
the fluctuations are mainly internal (Mortarini et al., 2009).
Generally odors are no longer perceived further than few kilome-
ters from the source (Guo et al., 2004).

The reasonwhy bothmeandering and relative dispersion effects
are treated as absolute dispersion in the regulatory models, has the
critical point in the estimate of the vertical and horizontal growth
of the plume. This growth is usually expressed in terms of the
standard deviation of the concentrations in the lateral and vertical
directions (syesz) (Draxler, 1976). In practice, these terms are very
difficult to quantify effectively and in problems of atmospheric
diffusion, sy and sz are estimated by empirical and semi-empirical
methods (Hay and Pasquill, 1957). According to Draxler (1976),
several methods have been suggested to determine the dispersion
coefficients. However, they all share a weakness: the inability to
calculate short-term time averages, as in the case of flammability,
malodor nuisance and, often, toxicity (Vieira de Melo et al., 2012;
Dourado et al., 2014). In spite of this limitation, those methods
have been extensively used to predict odor and toxic dispersion. In
this sense, more discussion appears to be needed on the commu-
nication of the magnitude of errors to decision makers (Irwin et al.,
2007).

In this respect, the present work aims to evaluate the lateral
plume dispersion parameters compared to field tracer data
collected in three different averaging times. Complementing
Irwin's (1983) work, this novel evaluation was conducted to
investigate the effect of averaging time on the lateral dispersion
and arc maximum concentration estimates. The dispersion pa-
rameters schemes used in this analysis include Pasquill-Gifford
using Turner's technique (Turner, 1997), H€ogstr€om (1964) and
those embedded in AERMOD (Cimorelli et al., 2005) and CALPUFF
using Draxler's (1976) method. The performances of these methods
are compared with observations of Round Hill II tracer data. The
main focus of this work is to help understanding some problems
that occur when employing dispersion models to predict short-
term peak concentrations.
2. Background

Due the lack of understanding of turbulence, for atmospheric
transport and dispersion, it is very difficult to reproduce exactly the
observations of a plume at a given time and location. (Yee et al.,
1994). Plume dispersion is caused by turbulent eddies of different
sizes. While small turbulent eddies tend to spread the plume, large
eddies tend to cause it to meander. As the plume becomes wider,
larger eddies become effective in dispersing it and smaller eddies
become increasingly ineffective (Gifford Jr., 1959; Seinfeld and
Pandis, 2006). Therefore, eddies that are larger than the instanta-
neous plume width will waft around the plume as a whole without
changing its internal structure, and contribute to the low-frequency
motions of the dispersing material in the form of plume
meandering, causing intermittency (periods of zero concentration).
On the other hand, eddies of smaller size that are comparable to the
size of the plume produce local distortions and convolutions that
contribute to the in-plume fluctuations due to clean the air
entrainment (Yee et al., 1994).

To mitigate the effects of fluctuations, the best that can be done
is to predict the average characteristics of plume dispersion (Irwin
et al., 2007). Nevertheless, there are some effects on averaging the
plume properties. Figure 1 shows the real case of plume boundaries
and concentration distributions of an instantaneous snapshot and
exposures of a few minutes and several hours. The meandering
behavior of the instantaneous plume can be seen, with the width of
the plume gradually growing downwind of the source. As the
averaging time increases, the plume assumes a more regular
appearance and the concentrations have a smoother distribution
(Seinfeld and Pandis, 2006). Due to the sum of the large and small
eddies effects, it is typical of observed plumes that the lateral and
vertical instantaneous dispersion are smaller than the averages
and, consequently, the instantaneous concentrations are at least as
large as themean (Hanna,1967). The plumemeandering dominates
the concentration fluctuations of time averaged plumes at short
downwind distances (in the range of few kilometers), while the
effects of in-plume fluctuation appears farther from the source.

Irwin et al. (2007) reported the influence of averaging time on
atmospheric transport and diffusion. Analyzing data from the
Round Hill II field experiment, the concentrations measured at
30 s are around 1.66 times higher than those measured at 10 min.

Most of the Gaussian models consider an average concentration
for a time period ranging from 10 min to 1 h (De Melo Lisboa et al.,
2006). According to Cimorelli et al. (2005), in the AERMOD the
lateral dispersion expressionwas reformulated to better fit the data
from the Prairie Grass Experiment. On the respective tracer data-
base, samples were collected over 10 min averages, allowing the
AERMOD to estimate lateral dispersion over this averaging time or
longer. The limitations of CALPUFF and the Pasquill-Gifford curves
are similar. One of the most reliable methods used to calculate the
dispersion coefficients in CALPUFF is based on Draxler's (1976)
formulation. The semi-empirical method developed by Draxler
employed themajor part of the datawith averaging times of 30min
or longer. Pasquill-Gifford empirical curves were based on samples
collected over 10 min averages of near-ground level releases.

According to Mortarini et al (2009) and Franzese (2003),
Gifford's (1959) fluctuating plume model proved to be a simple
and effective tool for predicting concentration moments of order
higher than the mean for stationary releases of contaminant in
idealized homogeneous turbulence. The Gifford's model, later
adapted by Mussio et al. (2001), De Melo Lisboa et al. (2006) and
Dourado et al. (2014), is a Gaussian model capable of providing the
percentage of time during which concentration remains above or
below a defined threshold. This characteristic turns the respective
model a valuable tool for odorant compound dispersion modelling.
This model is based on the idea that the plume can be decomposed
into two independent parts: a meandering part and a relative-
diffusion part (Mortarini et al., 2009). However, it is assumed that
there are no fluctuations inside the instantaneous plume (Hanna,
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Fig. 1. Plume boundaries and concentration distributions of a plume at different averaging times.
Source: Adapted from Seinfeld and Pandis (2006).
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1967). More sophisticated models as idealized by Thomson (1990),
Franzese (2003) and Mortarini et al (2009) can deal with both
meandering and in-plume fluctuations in complex situations.

The use of fluctuating plume model was hindered by a lack of
good estimates of the relative or dispersion (Hanna, 1967).
H€ogstr€om (1964) developed one of the fewworks in this sense. The
last author conducted a series of tests in which puffs of smoke
tracer were released at 30 second intervals and photographically
tracked downwind. From these experiments he extracted short-
term averaging time horizontal and vertical diffusion parameters.
However, even H€ogstr€om, later in 1972, acknowledged in his paper
that there is great deal of uncertainty in modeling the spread of the
instantaneous plume, which determines the relevant concentra-
tions (H€ogstr€om, 1972).

According to Hanna (1967), the fluctuation plumemodel and the
traditional Gaussian models such as AERMOD and CALPUFF are
fundamentally the same. One of the differences between these
models lies on the dispersion coefficients. While fluctuation plume
models uses H€ogstr€om's (1964) coefficients, the CALPUFF and ISC3
employ Draxler (1976) and Pasquill-Gifford curves, respectively.
AERMOD uses its own dispersion coefficient. From this perspective,
a comparison of plume lateral dispersion coefficients schemes
employed on the most used models for odors and toxic pollutants
regulations would be a valuable information for the model de-
velopers and users. This article intends to show some issues of
these schemes when used to predict short-term times averages
over short travel times and simple terrain.
1 http://www.ncdc.noaa.gov/most-popular-data#dsi-3505.
2 http://www.esrl.noaa.gov/raobs/.
3. Methodology

Four lateral dispersion methodologies were tested: Pasquill-
Gifford, H€ogstr€om, AERMOD and Draxler. A detailed description
of the dispersion parameter schemes can be found at Seinfeld and
Pandis (2006), H€ogstr€om (1964), Cimorelli et al. (2005) and Draxler
(1976). Themethods performanceswere evaluated using the Round
Hill II field tracer experiment, conducted in 1957 (Cramer and
Record, 1957). Round Hill II has a unique set of 10 experiments
having joint measurements of 0.5-min, 3-min and 10-min con-
centrations along arcs. An objective of the 10 Round Hill II releases
was to investigate the effects of averaging time on atmospheric
transport and diffusion. Sulfur dioxide concentrations were
sampled along 3 arcs (50, 100, and 200 m), and the release height
and sampling height was 1.5 m. Samples were taken for the first
30 s and the first 3 min of each 10 min sample. Temperature and
wind speed were measured on a tower located at the experiment
site (2 m altitude). The data were originally averaged over 10 min.
Complementary meteorological data (relative humidity, atmo-
spheric pressure, cloud cover, ceiling height, dew point) from the
Taunton, Massachussetts1 station (located around 50 km from the
experiment site) were used, in order to meet the minimum model
requirements. The last meteorological station was located in a
grassy and flat terrain (17 m altitude) with low roughness, sur-
rounded by small suburbs and trees. Convective mixing heights
were characterized by upper air soundings from a meteorological
station at Nantucket airport2 (around 130 km from Round Hill). The
Nantucket sounding station (4 m altitude) was located around 500
meters from the ocean, with vegetation and terrain similar to the
experiment site. These supplementary data far away from the
experiment site were used due to the unavailability of closer
measurements.

For the set of 10 experiments, the observed lateral dispersion
was derived from the lateral concentration profiles of dosage along
sampling arcs with the help of the MATLAB® least squares curve
fitting routine. The estimates of dispersion coefficients and
maximum concentrations were the result of the best fit reached
between the observed data and Gaussian curve. The procedures
followed the instructions of the ASTM standard guide “ASTM D
6589: Standard Guide for Statistical Evaluation of Atmospheric
Dispersion Model Performance”.

Statistical comparisons of the estimated dispersion parameters
with the observed values were computed. The following statistical
indices, proposed by Chang and Hanna (2004), were used: Bias
(Equation (2)), mean Fractional Error e FE (Equation (3)), Normal-
ized Mean Square Error e NMSE (Equation (4)), Spearman corre-
lation coefficient e r (Equation (5)) and Factor of two e FACT2
(Equation (6)). The Mean Absolute Error e MAE (Equation (7)),
suggested by Willmott and Matsuura (2005) was also employed.

BIAS ¼ Cp � Co (2)

FE ¼ 2:ðCp � CoÞ�
Cp þ Co

� (3)

NMSE ¼
�
Cp � Co

�2
Cp$Co

(4)

http://www.ncdc.noaa.gov/most-popular-data#dsi-3505
http://www.esrl.noaa.gov/raobs/
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The estimates of maximum concentrations were compared with
the observed data, using the Gaussian model of Equation (8):
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C(x,y,z) is the concentration of the emission at x meters down-
wind of the source, y meters laterally from the centerline of the
plume, and z meters above ground level. Qs is the quantity or mass
of the emission per unit of time, u is the wind speed, H is the height
of the source above ground level and sy and sz are the standard
deviations of a statistically normal plume in the lateral and vertical
dimensions, respectively.

The AERMOD and Draxler methods provide lateral dispersion
results for long averaging times of approximately 1 h (Vieira de
Melo et al., 2012). In order to examine these techniques on
shorter averaging times, the results of the methods need to be
appropriately converted. To account for the effect of averaging time
on AERMOD and Draxler, the Peak-to-Mean (P-M) presented in
Equation (1) was used. The values of the exponent, c, in the liter-
ature range from 0.2 to 0.5 (Venkatram, 2002), depending on at-
mospheric stability (Schauberger et al., 2012). Due to neutral to
slightly instable experimental condition, it was assumed that co-
efficient c was equal to 0.4. Peak-M values of 6.79 (10 min), 3.31
(3 min) and 2.04 (30 s) were employed. Analogously to Equation
(1), a formula was used to relate larger and shorter averaging times
to their respective dispersion coefficients (Equation (9)).

sm

sp
¼
�
tm
tp

�c

(9)

where sp and sm are the values of sy assumed for a shorter and a
longer averaging period respectively. The Pasquill and H€ogstr€om
estimates are valid for 10 min and 30 second averages, so Equation
(9) was not used for these cases.

Table 1 summarizes the average and standard deviation of
lateral dispersion (sy) and maximum concentrations (Cmax) along
crosswind arcs at various distances downwind for each averaging
time. As expected, Cmax increases as the averaging time decreases
Table 1
Geometric average and standard deviation of lateral dispersion (sy) and maximum conc

Parameter Averaging time Average

10 min 3 min

sy (m) 50 m 9.5 6.8
100 m 16.4 11.9
200 m 28.4 20.2

Cmax (mg m�3) 50 m 229.9 327.1
100 m 99.1 125.1
200 m 36.8 37.1
and lateral dispersion increases as averaging times increase. As
shown by the standard deviation (Std) in Table 1, the variability of
Cmax seems to decrease as the distance increases. According to Irwin
(2007), because Std is a measure of the relative scatter about Cmax

and because Cmax is seen to increase as the averaging time
decreases, this suggests that the actual variability of Cmax may
increase as the averaging time decreases. The opposite happens to
sy, since the Std of sy decreases with sy. Another important influ-
encing factor in Std of sy are the different turbulent scales in the
atmosphere, since the longer the averaging time is, the more sig-
nificant the role played by eddies of different sizes in spreading the
plume, increasing the variability of sy.

4. Results

4.1. Comparison of lateral dispersion estimates

Table 2 shows the lateral dispersion estimates performances
against the Round Hill II tracer experiment. The results suggest that
H€ogstr€om and Pasquill-Gifford improve their estimates as the
averaging time decreases, for downwind distances around 200 m.
H€ogstr€om reduces the Fractional Error (FE) from 90% to 50%, as the
averaging time decreases from 10 min to 30 s. For PG estimates,
there is an FE reduction of 50% from the 10 minute to 30 second
averages. The AERMOD and Draxler results showed an opposite
behavior, since these methods show inferior performances at
shorter averaging times. Without P-M adjustment, AERMOD over-
estimates by a range of about 70e110%, and Draxler by a range of
80e120%.

Instead of overestimating, AERMOD and Draxler underestimate
the observed lateral dispersion after using the P-M. Their perfor-
mances were improved significantly. For instance, Bias and FE are
reduced from 5.5 m to 70% to �1.3 m and 0%, for an averaging time
of 10 min. P-M also has an effect on the optimization of NMSE in-
dexes, decreasing from 0.40 to 0.01 in AERMOD and 0.65 to 0.01 in
Draxler, both for 10 min averages. FACT2 was also enhanced to 53%
on AERMOD and 67% on Draxler for 30 second averages. This re-
veals the predominance of systematic errors that are corrected after
P-M implementation. Despite having worse performances at
shorter averaging times, overall, after peak-to-mean scaling, AER-
MOD and Draxler reached the best index of bias, FE, NMSE and
FACT2. However, for the smallest averaging time considered, PG
had the least bias, FE, NMSE and 83% of its estimates were within a
Factor of 2 (Table 2).

As shown by the correlation coefficients (r) in Table 2, stronger
relationships between observed and predicted results were found
for AERMOD and Draxler. Of all the methods, H€ogstr€om presented
the lowest values of r.

The results for the three downwind distances ranges were used
to assess the variation in the methods' performances as a function
of the distance traveled by the plume and also as a function of
averaging time. The dependence of the distance and averaging time
in the comparison results on the lateral dispersion parameter
entration (Cmax) segregated by distance and averaging time.

Standard deviation (Std)

0.5 min 10 min 3 min 0.5 min

6.3 3.5 2.3 2.5
8.4 8.0 4.4 2.9

15.8 19.4 9.8 8.4
364.5 148.7 193.4 259.5
166.6 108.9 114.3 162.8
23.2 48.7 40.5 9.9



Table 2
Summary of statistical performances for H€ogstr€om, AERMOD, Draxler and PG lateral dispersion schemes as a function of averaging time of 0.5, 3 and 10 min, using the Round
Hill II data set. AERMOD and Draxler estimates without peak-to-mean (default) and with peak-to-mean (w/P-M).

Statistical index Averaging time H€ogstr€om AERMOD Draxler PG

Default W/P-M Default W/P-M

BIAS (m) 10 min �11.56 15.47 �1.27 21.30 1.59 �8.83
3 min �7.08 19.96 �2.96 25.78 �1.20 �4.35
0.5 min �3.35 23.69 �4.31 29.51 �3.45 �0.61

FE 10 min �0.90 0.67 0.02 0.80 0.17 �0.58
3 min �0.71 0.88 �0.20 1.00 �0.06 �0.37
0.5 min �0.46 1.10 �0.60 1.20 �0.47 �0.09

NMSE 10 min 1.28 0.40 0.01 0.65 0.01 0.51
3 min 0.67 0.94 0.07 1.33 0.01 0.17
0.5 min 0.19 1.68 0.38 2.21 0.21 4.5 � 10�3

r 10 min 0.56 0.69 0.69 0.75 0.75 0.63
3 min 0.61 0.79 0.79 0.82 0.82 0.68
0.5 min 0.63 0.78 0.78 0.76 0.76 0.75

FACT2 10 min 0.23 0.40 0.78 0.27 0.81 0.53
3 min 0.37 0.20 0.81 0.13 0.93 0.73
0.5 min 0.67 0.03 0.59 0.00 0.74 0.83

MAE 10 min 11.65 17.41 7.22 21.74 7.91 9.08
3 min 7.30 19.96 4.67 25.78 3.95 5.07
0.5 min 3.80 23.69 4.33 29.51 3.80 2.53

L. Hoinaski et al. / Atmospheric Pollution Research 7 (2016) 134e141138
estimates is illustrated in Figure 2. The mean FE is one of the more
useful statistics for characterizing the systematic errors. The illus-
tration of the FEwas used to characterize the precision of estimates,
similar to those employed by Irwin (1983) to allow comparison
Fig. 2. Mean Fractional Error (FE) between measured and estimated lateral dispersion for the
averaging times of 0.5, 3 and 10 min. The number above each symbol indicates the percent of
each symbol. The bars depict the mean fractional error plus or minus one standard deviation.
between results. The mean FE and standard deviation of FE was
used as measure of average bias and scatter of the estimates.

Draxler and AERMOD use a similar approach to parameterize
the lateral dispersion, and the statistical index in Table 2 and the FE
four schemes assessed, as a function of downwind distances of 50, 100 and 200 m and
the estimated values within a factor of 2. The mean fractional error is given to the left of
Results of AERMOD and Draxler are adjusted by the P-M factor for each averaging time.



Table 3
Correlation and statistical significance between observed and predicted lateral
dispersion segregated by downwind distances of 50, 100 and 200 m and averaging
time of 10, 3 and 0.5 min. Spearman correlation (r) between predictions and
observations.

M�etodo Averaging time r p

50 m 100 m 200 m 50 m 100 m 200 m

Hogstrom 10 min �0.12 0.02 0.08 0.78 0.98 0.84
3 min �0.17 �0.18 �0.27 0.68 0.64 0.49
0.5 min �0.27 0.35 �0.67 0.49 0.36 0.06

AERMOD 10 min 0.80 0.85 �0.35 0.01 0.01 0.36
3 min 0.87 0.88 �0.13 0.00 0.00 0.74
0.5 min 0.55 0.22 0.78 0.13 0.58 0.02

Draxler 10 min 0.63 0.80 0.63 0.08 0.01 0.08
3 min 0.63 0.55 0.72 0.08 0.13 0.04
0.5 min 0.62 0.38 0.17 0.09 0.31 0.68

P.G. 10 min 0.07 0.17 0.23 0.88 0.68 0.55
3 min �0.13 �0.10 0.12 0.74 0.81 0.78
0.5 min 0.57 0.27 0.43 0.12 0.49 0.25
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profile in Figure 2 show this similarity. Using the P-M adjustment,
there was a trend in the AERMOD and Draxler methods to over-
estimate the lateral dispersion at the farthest downwind distances
and to overestimate it at closer distances. In general, Draxler
reached better agreement with the observed lateral dispersion
compared to AERMOD, as can be seen from the FE values and the
fraction of data within the factor of 2 range in Figure 2. Both
methods show improved performance at longer averaging times.
Draxler (1976) and Irwin (1983) had already found that the Draxler
scheme (without P-M adjustment) results in the smallest mean FE
in the estimated dispersion parameter compared to PG and the
other methods for longer averaging times (>10 min). There is a
trend to find better results using AERMOD and Draxler in down-
wind distances greater than 200 m, for averaging times of 30 s or
smaller with P-M adjustment. However, extrapolation of the results
to greater downwind distances cannot be accomplished without
some uncertainty.

Of the four methods compared, PG had the smallest FE in
downwind distances of 50, 100 and 200 m for averaging times of
30 s. H€ogstr€om underestimates the Round Hill observation of the
lateral spread of the plumes for all the averaging times and dis-
tances evaluated. Similarly to PG, H€ogstr€om's performance
improved as the plume traveled away from the source and also for
shorter averaging times. H€ogstr€om developed his method to
calculate the dispersion of a puff over 30 second averages. It is
therefore expected that the H€ogstr€om estimates find better results
at shorter averaging times. Unlike AERMOD and Draxler, the
H€ogstr€om and PG estimates tend to reach better agreement with
the measured lateral dispersion farther from the emission. How-
ever, there is a tendency of PG to overestimate rather than under-
estimate for distances greater than 200 m and it is possible that the
H€ogstr€om estimates have this same behavior.

The variation of FE is smaller at shorter distances and shorter
averaging times, as also reported by Irwin (1983). This suggests that
variation of the horizontal wind direction contributes significantly
to the lateral dispersion at greater transport distances. According to
Irwin (1983), the dispersion estimation schemes assume steady-
state meteorological conditions during transport downwind.
Therefore, it is possible that variation in the transport directionmay
result in unexpectedly large values of lateral dispersion. Addition-
ally, the effect of fluctuation of the wind direction (large eddies) on
plume spreading is stronger for longer distances and longer aver-
aging times. Hence, the standard deviations of FE (represented by
the bars in Figure 2) are higher in these conditions.

The correlations betweenmodel estimates andmeasured values
segregated by averaging time and downwind distance and their
respective statistical significance values (p) are presented in Table 3.
The correlations were stronger for longer averaging times. This
highlights a difficulty in explaining the data variability of short-
term time concentrations. In general, worse agreement between
the observed and predicted datawas found for longer distances due
to the effect of variation in the transport direction, not addressed by
the methods. Overall, AERMOD and Draxler (with P-M adjustment)
appear to correlate better with the measured data, compared to PG
and H€ogstr€om. These last two methods use a purely empirical
approach to characterize the dispersion coefficients. On the other
hand, both AERMOD and Draxler use a more robust approach to
parameterize the turbulence and plume dispersion.

4.2. Comparison of maximum concentration estimates

A summary of the statistics of the model predictions compared
with measurements of maximum concentrations along the arcs for
the three averaging times considered is presented in Table 4. While
H€ogstr€om and PG overestimate the maximum concentrations,
Draxler and AERMOD underestimate them, when used in a
Gaussian model (Equation (8)). Draxler performed better than
AERMOD, although both methods underestimated the maximum
concentration even after P-M had been used. According to Irwin
(1983), the tendency to underestimate the peak concentration is
related to the tendency for the models to overestimate mostly the
vertical dispersion parameter. For shorter averaging times (30 s),
AERMOD and Draxler found the better statistical indexes and had
more estimates within a factor 2 among the methods, after P-M
implementation. Such improvement could arise from correction of
systematic errors by P-M adjustment. However, this scaling factor
did not reach the same agreement for the other time scales (10 and
3 min). It may prove difficult to set correct P-M values for different
averaging times and atmospheric conditions. Some issues have
already been warned of by researchers, such as Guo (2006), about
the choice of an appropriate P-M ratio to adjust the modeled con-
centrations. The subjectivity of this scaling method may lead to
discrepant results. Assuming slightly different values of c available
in literature, Equations (1) and (9) may produce differentmaximum
concentration values among users.

The statistics show the tendency of H€ogstr€om to underestimate
the lateral and vertical dispersion, resulting in unexpectedly
elevated maximum concentration estimates. The PG scheme pre-
sents similar results with small bias, however.

Despite the high bias, the strength of the correlation coefficients
in Table 4 shows that the model estimates have a strong relation-
ship with the measured data. As expected, AERMOD and Draxler
obtained higher r values.
5. Conclusions

The results of the comparison of lateral plume dispersion co-
efficients schemes support the conclusions that AERMOD and
Draxler performed better than the PG and H€ogstr€ommethods, after
using the P-M ratio. The AERMOD and Draxler estimates are
strongly correlated with the observed maximum concentrations
and lateral dispersion. However, their estimates are biased and the
magnitude of systematic errors tends to grow as the averaging time
decreases. Despite the bias reduction, the application of the P-M
ratio is subjective and can produce different performances as it
depends on the modeler's experience, the atmospheric conditions
and distance.

The distance dependence of the methods' performances was
evaluated. The analysis revealed that AERMOD and Draxler, with P-
M adjustment, tend to overestimate the lateral dispersion farther



Table 4
Performance of methods in estimating the maximum concentrations in the Round Hill experiment for times of 0.5, 3 and 10 min through a Gaussian equation.

Statistical index Averaging time H€ogstr€om AERMOD Draxler PG

Default W/P-M Default W/P-M

BIAS (mg m�3) 10 min 669.9 �114.3 �100.5 �112.8 �97.5 184.5
3 min 692.6 �147.3 �114.7 �145.7 �109.4 169.3
0.5 min 658.0 �169.0 �88.5 �167.4 �77.6 141.9

FE 10 min 1.5 �1.5 �1.1 �1.5 �1.1 0.9
3 min 1.4 �1.6 �0.9 �1.5 �0.8 0.7
0.5 min 1.3 �1.6 �0.4 �1.5 �0.3 0.7

NMSE 10 min 4.6 8.1 3.1 7.1 2.6 0.9
3 min 3.4 9.4 1.7 8.3 1.4 0.5
0.5 min 2.8 11.1 0.4 9.8 0.3 0.3

r 10 min 0.86 0.86 0.9 0.87 0.9 0.83
3 min 0.89 0.89 0.9 0.89 0.9 0.84
0.5 min 0.77 0.85 0.8 0.83 0.8 0.85

FACT2 10 min 0.00 0.03 0.1 0.03 0.2 0.20
3 min 0.00 0.00 0.2 0.00 0.3 0.33
0.5 min 0.10 0.00 0.7 0.03 0.6 0.33

MAE 10 min 669.9 114.3 100.6 112.8 97.6 188.7
3 min 692.6 147.3 114.7 145.7 109.4 177.3
0.5 min 658.0 169.0 98.1 167.4 92.4 161.2
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from the source and underestimate it at downwind distances less
than 200 m, as encountered by Vieira de Melo et al. (2012). The
H€ogstr€om and PG schemes underestimate the lateral dispersion;
however, as observed by Irwin (1983) that evaluated lateral
dispersion schemes in farther downwind distances from the source
(above 1 km), this bias could be reversed beyond 200 m. However,
extrapolation of the results to greater downwind distances cannot
be accomplished without some uncertainty (Irwin, 1983).

The respective evaluation also highlights the effect of large
turbulent eddies on plume spreading at greater distances and
longer averaging times, which increase the lateral dispersion and
decrease the arc maximum concentration. Moreover, the results
support the conclusion that the averaging time strongly affects the
models' ability to predict the plume's lateral dispersion and
maximum concentrations. This reveals a need to embed the influ-
ence of averaging time in the model formulations and also the use
of more sophisticated techniques such as Large Eddy Simulation
(LES), and one particle Lagrangian models such as developed by
Thomson (1990), Franzese (2003), Mortarini et al (2009) andManor
(2014).

There are important concerns about these results due to the
limited database available to investigate the effects of averaging
time. The use of meteorological data farther from the site could
also reduce the representativeness of the present evaluation. This
last drawback is an important limitation, specially, in small
time scales evaluated as used in this work. The development of a
more robust dataset that comprises various atmospheric condi-
tions and averaging times would allow us to reach more conclu-
sive results.
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