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ABSTRACT 

Dispersion modeling is extensively used as a decision tool for estimating the impact of atmospheric emissions. 

However, it was proved by researchers that most part of the models, including the regulatory models recommended 

by US EPA (AERMOD and CALPUFF), do not have the ability to predict under complex situations. This inability 

arises from the errors in the lateral and vertical dispersion estimates, which are reliable only to predict 10 minute or 

longer average concentrations. In the knowledge of the possible issues on the models predictability, this article 

presents a novel evaluation of the propagation of errors in lateral dispersion coefficient of AERMOD with 

emphasis on estimate of average times under 10 minutes. The sources of uncertainty evaluated were 

parameterizations of lateral dispersion (σ୷), standard deviation of lateral wind speed (σ୴) and processing of 

obstacle effect. The model's performance was tested in two field tracer experiments: Round Hill II and 

Uttenweiller. The results show that error propagation from the estimate of σ୴ directly affects the determination of σ୷, especially in Round Hill II experiment conditions. After average times are reduced, errors arise in the 

parameterization of σ୷, even after observation assimilations of σ୴, exposing errors on Lagrangian Time Scale 

parameterization . The assessment of the model in the presence of obstacles shows that the implementation of a 

PRIME algorithm can improve the performance of the AERMOD model. However, these improvements are small 

because of the limitations of the algorithm when the obstacles have a complex geometry, such as Uttenweiller.  

 

Keywords: Dispersion models, AERMOD, PRIME, turbulent velocity, odor. 
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1. INTRODUCTION 

Dispersion models play an important role in impact assessments of the air quality when pollutants are emitted by 

industry. In the model used here, the physical and chemical aspects of transportation, dispersion and processing of 

pollutants in the atmosphere are simulated [1]. It is therefore possible to predict a pollutant concentration in a given 

site or region and in a desired period even before emission occurs. However, application of the model has many 

limitations because of the complexity associated with the dispersion of pollutants. 

 

According to Irwin and coauthors [2], the dispersion of pollutants in the air has a deterministic part and a stochastic 

part. Dispersion models such as AERMOD and CALPUFF, recommended by the Environmental Protection 

Agency of the United States (US-EPA), represent only the deterministic part of the process (ensemble averages). 

The stochastic part is treated as a deviation or an error of the ensemble average. However, even the plot represented 

by the model is subject to errors [2]. Because of the imperfection of input data (e.g., meteorological conditions, 

emissions, terrain, land use, etc.) and the difficulty of parameterizing dispersion of pollutants, the models can 

generate discrepant results [2].  

 

The limitations of the models are aggravated when they are used to represent reduced timescales [3] and are applied 

in the presence of obstacles[4]. In the first case, the stochastic part, not treated by the model, becomes more 

evident. In the second, there is a change of turbulence in the area of influence of the obstacle which is not properly 

explained by the models. Irwin et al. [2] reported the influence of averaging time on atmospheric transport and 

diffusion. Analyzing data from the Round Hill II field experiment, the concentrations measured at 30 s are around 

1.66 times higher than those measured at 10 min. In spite of this limitation, those methods have been extensively 

used to predict odor and toxic dispersion [4–9]. In this sense, more discussion appears to be needed on the 

communication of the magnitude of errors to decision  makers [10].  

 

Common practice consists of converting model predicted estimates to shorter time periods using Peak-to-Mean (P-

M) formula, developed by Gifford [11]. However, according to Dourado et al. [12], a comparison of the model 

results with wind tunnel data showed that AERMOD fails to predict the peak concentrations using P-M equation. 

Additionally, Guo, Yu, and Lague  and [13] Venkatram [14] have noted some limitations to the use of P-M 

equation to adjust the modelled concentrations.  
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More sophisticated techniques such as Large Eddy Simulation (LES) [12], and one-particle Lagrangian models, 

such as developed by Thomson [15], Franzese [16], Mortarini et al. [17] and Manor [18], should render better 

performance than AERMOD in complex situations, like reduced timescales and in the presence of obstacles. 

However, none of than is extensivelly used and worldwid knwon as AERMOD for regulatory propouses. On the 

other hand, only few studies have been conduced to evaluate the source of the errors [19,20] and adjust the 

regulatory models AERMOD. More stydies should be done to improve the predictability of this model in real cases 

under averaging times shorter than 10 minutes and in the presence of obstacles. 

 

This study aims to evaluate the propagation errors in lateral dispersion coefficient of AERMOD in reduced 

timescales and in the presence of obstacles. Evaluations were made with the USA's Round Hill II [21] and 

Germany's Uttenweiller [22] experiment databases. To this end, the effects of a PRIME algorithm and the 

parameterization of lateral wind speed deviation (σ୴) were investigated after determination of lateral dispersion 

(σ୷) by AERMOD. The performance of AERMOD was compared by means of measured and estimated σ୴. The 

implementation of the PRIME algorithm was tested in AERMOD in an attempt to estimate σ୷ in the presence of 

obstacles at different average times.  

 

2. BACKGROUND 

Among the most frequently used analytical formulations for calculating the dispersion of pollutants in the air is the 

traditional Gaussian (Equation 1), which in turn is the calculation basis for the AERMOD model:  

 

C(୶,୷,) = ୕౩ଶ౯୳ . exp ൬ି୷మଶ౯²
൰ . ቆexp ቀି(ିୌ)మଶ²

ቁ + exp ቀି(ାୌ)మଶ²
ቁቇ               (1) 

 

where x, y and z are the positions where the concentration of contaminants (m) is estimated; C(୶,୷,) is the expected 

contaminant concentration at x, y and z (g.m-3); Qୱ is the emission rate (g.s-1); H is the effective height of release of 

pollutants; u is the average wind speed at the top of the chimney in the direction of flow (m.s-1); σ୷and σ are the 

mean deviations of the distribution of concentration in the directions y and z (m).  
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In this model, one of the critical points in the estimation of concentrations is the determination of the term σ୷, 

which represents the lateral spread of the plume. The lateral dispersion in AERMOD is based on a formulation 

prepared by Pasquill [23], consistent with the theory of Taylor [24], given by Equation 2:  

 σ୷ = σ୴Tf ቀT tൗ ቁ                    (2) 

 

where σ୴ is the standard deviation of lateral velocity to the average wind direction, f is a function based in T 

(source travel time to the receiver) and the Lagrangian time scale (t) [25].  

 

Considering that the formula developed by Pasquill properly represents reality, the sources of uncertainty in 

estimating σ୷ reside in the determinations of σ୴ , T and f ቀT tൗ ቁ. The value of T can be easily obtained by dividing 

the distance between the source and the receptor by wind speed.  

 

2.1 Estimating the standard deviation of lateral velocity (ોܞ) 

Variations in the lateral wind speed (σ୴) can be obtained by measurements. However, these measurements are not 

routinely made by weather stations, and thus it is still necessary to estimate the values of σ୴ [26]. AERMOD has a 

specific formulation for estimating such parameters, which is one of the sources of uncertainty in determining σ୷ 

[25]. According to Venkatram and coauthors [27,28] and Irwin and coauthors [2], σ୴ explains much of the 

variability of lateral dispersion of pollutants in the air. These researchers also reported that estimates of the models 

are optimized when measurements of lateral wind variations are incorporated. In the AERMOD model, the σ୴ is 

estimated by Equation 3 (Cimorelli et al. 2005): 

 σ୴ଶ = σ୴୫ଶ + σ୴ୡଶ                       (3) 

 

where σ୴୫ and σ୴ୡ are lateral wind fluctuations occasioned by mechanical and convective mechanisms. In the 

mixed layer σ୴ୡ is related to convective velocity scale (w∗) as follows: 

 σ୴ୡଶ = 0.35w∗ଶ                      (4) 
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A minimum value of 0.5 m.s-1 is assumed for σ୴ୡ  above the total mixing depth (zi). 

 

According to Cimorelli and coauthors [25], AERMOD assumes that  σ୴୫ varies linearly with height between its 

value at the surface and an assumed residual value at the mechanical mixing height (zim): 

௩ଶߪ  = ቀఙೡమ ሼ௭ሽ	ି	ఙೡమ௭ ቁ ݖ + ௩ଶߪ   for  z ≤ zim; 

௩ଶߪ = ௩ଶߪ ሼݖሽ  for  z > zim                    (5) 

 

where ߪ௩ଶ ሼݖሽ = min (ߪ௩ଶ , 0.25m2.s-2) and ߪ௩ଶ  is equal to 3.6ݑ∗ଶ. In the stable boundary layer (SBL), the 

turbulence is exclusively mechanical. In the convective boundary layer (CBL), ߪ௩ has both convective and 

mechanical contributions. While ߪ௩ is strongly influenced by ݑ∗ estimates, ߪ௩ is affected by ݓ∗ estimates. 

 

2.2 Estimating the function  ቀ܂ ൗۺܜ ቁ  

In order to allow the application of Equation 2, in AERMOD, the function ݂ ቀܶ ൗݐ ቁ is found empirically from field 

experiments performed on average times over 10 minutes. The lateral dispersion function is based on the theory of 

Taylor [24] and is defined as [25]: 

 

௬ߪ = (௩ܶߪ) (1 + ൘(ܺߙ  (6) 

where ܺ = ݔ௩ߪ ൗݖݑ ,	 ܶ௬ = ߙ ௩ andߪ/݈ = ݖ	 ݈ൗ . 

 ݈ represents the lateral turbulent scale, ܶ௬ is the Lagrangian time scale, ݔ is the downwind distance. In this case, ݂ ቀܶ ൗݐ ቁ is given by Equation 7: 

 ݂ ቀܶ ൗݐ ቁ = 	1 (1 + ൗ(ܺߙ                   (7) 

 

According to Cimorelli and coauthors [25], in AERMOD the ݂ ቀܶ ൗݐ ቁ expression was formulated to better fit the 

data from the Prairie Grass Experiment (Barad and Haugen 1958). A better agreement between Equation 6 and a 
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subset of stable and convective cases from the Prairie Grass Experiment (Barad and Haugen, 1958) appeared when 

p and α were set equal to 0.3 and 78, respectively. In the respective tracer database, plume samples were collected 

over 10-min averages. As a consequence of averaging plume properties, fluctuations arising from plume 

meandering are smoothed after 10 minutes and short-term peak concentrations can no longer be observed. 

According to Irwin and coauthors [2], as average times increase, there is an increase in the lateral dispersion of the 

plume. For this reason, dispersion coefficients are valid only for timescales for which they were designed. For cases 

in which the impact occurs in the order of seconds, such as dispersion of pollutants with high toxicity and odor 

perception, it is known that conventional dispersion coefficients (valid for periods exceeding 10 minutes) are not 

adequate. With average times of over 10 minutes, the effects of dispersion and change in the axis of the plume, 

caused by different turbulent scales, are virtually indistinguishable, except that only the former is responsible for 

the effective dilution of pollutants. Therefore, the dispersion estimated by the models is usually greater than that 

which effectively occurs at average times shorter than 10 minutes. 

 

2.3 Effect of obstacles 

Besides the aforementioned uncertainty sources, lateral dispersion (ߪ௬) is also influenced by the presence of 

obstacles. To include the effect caused by the presence of obstacles in calculating the dispersion of pollutants, 

AERMOD uses the plume rise model enhancements (PRIME) algorithm. Among the benefits of PRIME are the 

correction of dispersion coefficients and the elevation of the plume [4] 

 

3. METHODOLOGY 

AERMOD performance was tested against Round Hill II (sulphur dioxide release from a source close to the ground 

under unstable and stable conditions) and Uttenweiler field tracer data (odorant gas released from a stack located 

on the top of a building under stable conditions). Despite some issues related to heavy gas tracer as sulfur dioxide 

(Round Hill II) and odor measurements (Utteinweiler), it was not found other field experiment databases available 

in the literature, which employs measurements under 10 minutes averages. Another important feature of the Round 

Hill II and Utteinweiler databases was the measurement of the standard deviation of the lateral wind velocity (ߪ௩), 

allowing the evaluation of the error propagation through the parameterizations of AERMOD. As mentioned, ߪ௩ is 

not routinely measured in meteorological stations, consequently, it is generally estimated by the models. The first 

evaluation conducted in the present work was the comparison of observed and estimated values of ߪ௩ by 

AERMOD. After that, the model was tested using the same observed and estimated values of ߪ௩ to quantify the 
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propagation of the errors on estimation of ߪ௬ in comparison with observed lateral dispersion of the plume. 

Assuming that the measurements of ߪ௩ were perfect, the residual differences between observed and estimated 

values of ߪ௬ has its origins in AERMOD ߪ௬ parameterization (Lagrangian time scale - ܶ௬).  

3.1 Round Hill II experiment 

The quality of AERMOD estimates was tested by comparison with the Round Hill II experiment conducted in 1957 

[21]. This experiment was conducted with the purpose of studying the diffusion of pollutants in the atmosphere at 

different average times. A tracer gas (SO2) was issued constantly by a chimney 1.5 meters high with a horizontal 

opening. Measurements of the concentration of leeward SO2 were performed in three concentric arcs from the 

source, located at 50, 100 and 200 meters. SO2 samples were collected within the first 30 seconds, 3 minutes and 10 

minutes. Thus, the database allowed evaluation of the difference between the concentrations at the above-

mentioned average times. This experiment also included meteorological measurements of wind speed, wind 

direction and temperature. Wind direction standard deviation measurements during the Round Hill II experiment 

sample period were also made available by Cramer and Record (1957).  

 

The Round Hill II experiment also provides wind direction standard deviation data every 10 minutes. Thus, it was 

possible to obtain the standard deviation of the horizontal speed of the wind by applying Equation 3: 

௩ߪ  = .തݑ  (3)            (ఏߪ)݊݅ݏ

 

where ߪ௩ is the standard deviation of horizontal wind speed, ݑത is the average wind speed and ߪఏ is the standard 

deviation of wind direction.  

 

The standard deviation of wind speed is a parameter that can be included as an input in AERMOD. When measured 

values of ߪ௩ are implemented in AEROMOD, the use of equations to estimate it can be avoided, and consequently 

error propagation in determining ߪ௬, found by estimating ߪ௩ from the parameterization of AERMOD, is reduced.  

 

In order to make it possible to run AERMOD, it was necessary to complement meteorological measurements of the 

Round Hill II experiment with data provided by Taunton1 surface weather station, Massachusetts, NOAA domain, 

                                                      
1Available at http://www.ncdc.noaa.gov/most-popular-data#dsi-3505  
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located less than 50 km from the experimental site.2 These measurements were used because of the lack of 

meteorological stations near the site during the period in which the experiment was performed and the need for 

temperature profile measurements at high levels of humidity, and pressure, among others. These stations were 

located in a grassy and flat terrain (17 meters altitude) with a low roughness length, surrounded by small suburbs 

and trees. Prospecting data from Nantucket Island,3 Massachusetts, were used to characterize the height of the 

boundary layer. The Nantucket sounding station (4 meters in altitude) was located approximately 500 meters from 

the ocean, with vegetation and terrain similar to the experimental site. These supplementary data far away from the 

experimental site were used to fill in the missing model input data.  

 

The Monin-Obukov length during unstable conditions by the time that the experiment was conducted varied from -

771 to -3762 metres and from 93 to 580 metres under stable conditions. In general, the conditions of the 

atmosphere varied from slightly unstable to stable. The measurements of the wind velocity were in the range of 3.4 

± 1.1 ms-1, which indicates the absence of low wind speed. To perform this step, version 13350 of AERMOD and 

AERMET (AERMOD weather processor) were used. 

 

3.2 Uttenweiller experiment  

The experiment took place in the rural zone of the municipality of Uttenweiller, Germany. The farm and its 

surroundings are primarily cultivated fields (Bächlin et al. 2002). The Uttenweiller database was developed by 

measurements of the intensity of odors emitted by a pig-breeding farm. This breeding farm consists of two 

buildings 7.65 and 10.65 meters high. The smallest has two chimneys 8.5 meters high, connected to internal 

ventilation systems (Bächlin et al. 2002). Only one of the chimneys was used in the experiment. The chimney used 

had three compartments, totaling 3.6 square meters. This procedure is analogous to that already performed by 

Souza and coauthors [6]. 

 

The set of 15 assays was conducted in two periods: from 12 to 13 October 2000 and on 31 October 2001. During 

all of the experiments, the cloud coverage was sufficient to prevent strong convective conditions, and the wind was 

not classified as calm (it was in the range 1.7 ms-1 ± 4.9) [22]. The Monin-Obukov varied between 35 (slightly 

stable) and 500 (stable conditions).In general, the conditions of the atmosphere were stable during data collection. 

                                                      
2 Round Hill, Massachusetts. 
3 Nantucket is less than 130 km from the place where the experiment was conducted. 
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Another important feature was the absence of lulls during the evaluation period. Only two experiments (I and L) 

were selected because of the higher spatial resolutions of their receiver arches.  

 

The odors were measured by 11 trained judges, positioned in line and leeward of the chimney. In this case, the 

intensity of the odor on a scale ranging from zero (neutral/odorless) to five (very strong) was measured. The judges 

responded on the intensity of odor perceived every 10 seconds during the 10 minutes of the experiment. Overall, in 

experiments I and L, approximately 120 10-second measurement tests were recorded. The experiment was also 

provided with two weather stations, one with a cup anemometer and one with a sonic anemometer.  

 

Measurements of upper air were obtained by soundings of Schnarrenberg airport, about 84 km northwest of the 

experiment site. Atmospheric pressure and cloud cover data from the Laupheim weather station, 22 km northeast of 

Uttenweiller, were also used. In the present study, wind speed and direction data measured by the sonic 

anemometer installed on-site, with a resolution less than 10 seconds, were used. This meter also provided standard 

deviation data of horizontal and vertical wind speed and friction velocity, which were used as input data in 

AERMOD. As in Round Hill II, the availability of observations of ߪ௩ allowed the performance of AERMOD to be 

evaluated with and without the implementation of these measures.  

 

In Uttenweiller, there were two obstacles, one of which was the fireplace used in the experiments. Thus, it was 

necessary to simulate the building downwash effect caused by these obstacles of a change of turbulence and plume 

shape. AERMOD performs the treatment of flow with the presence of shields through the plume rise model 

enhancements (PRIME) algorithm. This model has been developed to incorporate key aspects associated with 

obstacle effects. Among these effects are the increase in plume dispersion coefficients caused by turbulence drag 

and a reduction in plume elevation. The latter is owed to the combined effects of downdraft lines at the back of the 

obstacle and to the capture of the plume by turbulence drag. Therefore, the model takes into account the position of 

the source in relation to the building, and calculates the intensity of flow velocity, turbulent wind intensity and 

inclination of current lines as a function of the projected shape of the obstacle.  

 

<Approximate location of Figure 1> 

 

3.3 Determination of lateral dispersion and maximum concentrations observed 
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The lateral dispersion observed in each experiment was obtained from the best adjustment between measurements 

and the Gaussian model shown in Equation 4:  

 

(௫,௬,௭,ு)ܥ = .௫ܥ ݔ݁ ൬ି௬మଶఙ²
൰           (4) 

 

where x, y and z are the transverse and vertical distance to the average wind direction; ܥ௫ is the maximum 

concentration in the distance x; ߪ௬ is the lateral dispersion and H is the height of the plume.  

 

Given the above considerations, it was therefore assumed that the observed concentrations of the plume in each arc 

followed a Gaussian distribution. To find the best adjustment between the Gaussian curve of Equation 4 and the 

observations, a computational algorithm based on the nonlinear least squares method from Matlab® software was 

used. The convergence criterion used was achieved when the change in the parameters was less than  10-8 . ߪ௬ and ܥ௫ data, from the experiment that did not meet the criterion, were excluded from the analysis. The restriction of 

values of ߪ௬ within receiver arc limits were also part of the quality control of data.  

 

The main difference between the bases of Round Hill II and Uttenweiller data is in the measurement of 

concentrations in the former and in odorant intensities in the latter. The hypothesis that the odorant intensity felt by 

the judges was proportional to the concentration of odors was assumed. However, it is known that the relationship 

between odor intensity and odor concentration is not linear [30]. Better agreements are found by a power law or 

logarithm expressions. This limitation of the present work is shared by other studies of odor dispersion. In order to 

reduce the errors, for this experiment was not evaluated the arc maximum concentration. It is expected that the 

lateral dispersion of odor concentration and intensity do not vary importantly.  

 

Because of the lack of environmental odor concentration measurements, it was not possible to assess AERMOD 

performance in determining maximum concentrations. It is worth noting that, in Uttenweiller, the intensities of 

odors in the environment were measured, and this is a different concentration measurement. The conversion of 

intensity to odorant concentration requires an empirical equation that would result in a significant increase in 

uncertainty. 
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In addition to convergence criteria adopted in Round Hill II, 200 meters and 5 (maximum intensity) ceilings were 

set for ߪ௬ and ܥ௫, respectively. This procedure was necessary because Uttenweiller observations were performed 

on time scales and spatial resolutions of receptors lower than Round Hill's, therefore they were less stable than 

those of the Round Hill II experiment. The resolution in Uttenweiller allowed the plume's lateral dispersion data to 

be obtained every 10 seconds (judges' response time). Averages at every minute of observation of ߪ௩ and perceived 

intensities were also evaluated, totaling 20 values. After the odor intensities on each receptor were averaged (for 

one minute), the value of ߪ௬ was determined with the above-mentioned methodology. This procedure was designed 

to evaluate the effect of average times on the observations of ߪ௬ and their respective impact on the performance of 

AERMOD in Uttenweiller experimental conditions.  

 

3.4 Statistical indexes 

The effectiveness in determining lateral dispersion (ߪ௬) and maximum concentrations (ܥ௫) by AERMOD using 

measured and estimated standard deviation of lateral wind speed (ߪ௩) was assessed by comparing observed and 

modeled values. Statistical index bias, fractional bias (FB), normalized mean square error (NMSE), Spearman's 

correlation coefficient (ρ), factor of two (FACT2) and mean absolute error (MAE) were used. The estimated values 

of ߪ௬ and also ߪ௩ were directly extracted from AERMOD outputs. 

 

4. RESULTS 

4.1 AERMOD performance in Round Hill II experiment 

Table 1 presents the means of statistical indexes used to compare measured and modeled ߪ௩. The Spearman's 

correlation coefficient (ρ) shows that the variability of ߪ௩ observations in Round Hill II is well represented by 

parameterizations. However, bias (0.53 m/s) and FB (56% or 0.56) indexes suggest the presence of systematic 

errors. FACT2 also shows that 70% (0.7) of the data is within the range of half to twice the value of the 

observations.  

 

<Approximate location of Table 1> 

 

Table 2 shows the effect of errors in the parameterization of ߪ௩ in the estimates of ߪ௬ by the model. In this table, 

the comparison of AERMOD efficiency using measured and estimated ߪ௩ is shown. It is possible to verify that all 
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statistical indexes are optimized when the model uses the observations of ߪ௩. From the average values of fractional 

bias (FB), it is possible to state that the implementation of these latest observations in AERMOD may result in an 

improvement of around 40% (from 67% to 22% in an average time of 10 minutes) in the estimates of the lateral 

coefficients and of 30% of maximum concentrations. There is also a 30% improvement in the percentage of the 

values that lie within the range established in FACT2. NMSE values also show a reduction of random and 

systematic errors in estimates of ߪ௬ and ܥ௫ when the model uses observations of ߪ௩.  

 

In the absence of measurements of ߪ௩, an increment of bias values was found ion ߪ௬ estimates, partly because of 

the bias in estimating ߪ௩. On the other hand, the high correlation between observations and estimates of ߪ௩ (ρ = 

0.98) provided a strong correlation between ߪ௬ observed and modeled by AERMOD (ρ = 0.69), without 

implementing ߪ௩ measurements.  

 

Despite some improvement in the lateral dispersion estimates provided by the observed values of ߪ௩. it is still 

possible to verify large bias in maximum concentration estimates, (mainly) owed to errors in the parameterization 

of the vertical dispersion (ߪ௭). This can be seen in the FACT2 values, in which there is no significant difference 

from the estimates of ܥ௫ by AERMOD using observations and predictions of ߪ௩.  

 

Using measurements of ߪ௩ by AERMOD, we see that the simulated plume disperses less and it becomes closer to 

the observations of Round Hill II. However, even after the implementation of observations of ߪ௩, the model 

overestimates, in ascending order, the lateral spread of the plume as the average time is reduced. Hence, the 

maximum concentrations are underestimated as the averaging time is reduced. The error in the ߪ௬ estimates 

increases from 22% to 71% when the average time is reduced from 10 minutes to 30 seconds. This suggests an 

error propagation in the ݂ ቀܶ ൗݐ ቁ parameterization. It can be seen that observed values of ߪ௬ are smaller for 

averaging times of 30 seconds than for 10-minute averages. The more the averaging time increases, the more 

important the effect of non-dispersing eddies on the lateral dispersion is. Therefore, it is typical of observed plumes 

that the lateral and vertical instantaneous dispersion is smaller than the average and consequently the instantaneous 

concentrations are at least as large as the mean [3]. AERMOD does not consider the effect of averaging time, 

because the model was designed and calibrated to calculate 10-minute or longer averages.  

 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Su

ss
ex

 L
ib

ra
ry

] 
at

 1
5:

22
 2

7 
Ju

ne
 2

01
6 



<Approximate location of Table 2> 

 

The results for the three downwind distance ranges were used to assess the variation in the models’ performances 

as a function of the distance traveled by the plume and also as a function of AT. The dependence of the distance 

and AT in the comparison resulted in the lateral dispersion parameter estimates illustrated in Figure 2. 

 

<Approximate location of Figure 2> 

 

From Figure 2, it is clear that the assimilation of measurements of ߪ௩ substantially improves the performance of 

AERMOD, reducing model errors in all evaluated distances. However, the improvement provided by the 

implementation of ߪ௩ is not uniform because AERMOD increases the errors at further downwind distances and the 

reduction in average times. This indicates the persistence of systematic errors in AERMOD parameterizations of ߪ௩ 

and ݂ ቀܶ ൗݐ ቁ. The meandering effect grows as a function of distance and this is one of the possible reasons for the 

worse AERMOD results at the farthest downwind distances. Regarding the averaging time, AERMOD is 

insensitive to this effect. As can be seen from the FE values and the fraction of data within the factor 2 range in 

Figure 2, the model shows improved performance at longer averaging times. 

 

The variation of FE is smaller at shorter distances and shorter averaging times, as also reported by Irwin [31]. This 

suggests that variation of the horizontal wind direction contributes significantly to the lateral dispersion at greater 

transport distances. According to Irwin [31], the dispersion estimation schemes assume steady-state meteorological 

conditions during transport downwind. Therefore, it is possible that variation in the transport direction may result in 

unexpectedly large values of lateral dispersion. Additionally, the effect of fluctuation of the wind direction on 

plume spreading is stronger for longer distances and longer averaging times. Hence, the standard deviations of FE 

(represented by the bars in Figure 2) are higher in these conditions. Cimorelli and coauthors [25] note that 

AERMOD considers the fluctuation of the plume center. According to them, for time-averaged concentrations, 

meander has the effect of increasing the lateral spread of the actual plume’s distribution. As this fluctuation has 

little influence in terms of reducing average times, it is possible that the addition of this effect by AERMOD 

increased the value of σ୷  and was the reason for overestimations at 30-second averaging time (Table 2). A further 

investigation of discrepancies increase with distance can be found in Hoinaski et al. [32] 
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4.2 AERMOD performance in Uttenweiller's experiment in the presence of obstacles 

Table 3 shows the performance of AERMOD in the estimation of σ୴ in average times of 10 seconds and one 

minute compared to observations of sonic anemometer. Table 4 shows statistical indexes from the comparison 

among observations and estimates of σ୷. It is worth to emphazise that estimated values of σ୴ were obtained in 

AERMOD outputs.  

 

<Approximate location of Table 3> 

 

In Table 3 the model underestimates the observed values of σ୴, unlike what happened when AERMOD was tested 

with the Round Hill II database. The magnitude of systematic errors in estimating σ୴ (evidenced by bias and FB) 

was lower when AERMOD was tested in Uttenweiller (Table 3) than in Round Hill II. This culminated in minor 

differences between bias estimates of σ୷ with and without the use of σ୴  measurements (Table 4). On the other 

hand, there is a lower correlation between observations and estimates of σ୴ according to ρ values in Table 3. The 

comparisons related to 10-second (ρ = 0.23) and one-minute averages (ρ = 0.60) in Uttenweiller. Observations in 

Uttenweiller were difficult to describe when we compared the 10-minute averages used in Round Hill II (ρ = 0.98). 

This explains the poor correlation among observations and estimates of σ୷ in 10-second average times. However, 

the respective field experiment is useful to represent the deterministic part of the dispersion process (ensemble 

averages), evaluating the bias of the model's estimations.  

 

When the averaging time was increased from 10 seconds to one minute, the correlation between observation and 

predictions of σ୷ intensified, although these relations were still weak. Also, both systematic and random errors 

decreased, according to bias and MAE values. The removal of outliers and discrepant values after averaging of the 

observations of σ୴ and σ୷, reduced the stochastic parcel and variance of their values. This improved AERMOD's 

performance in estimating σ୷ averaged in one minute.  

 

<Approximate location of Table 4> 
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The PRIME algorithm accounted for a slight improvement in AERMOD performance in estimating σ୷. An FB 

reduction of 8% and 2% was found with measured values of σ୴ and PRIME in AERMOD, for averaging times of 

10 seconds and one minute. Vieira de Melo and coauthors (2012) have previously reported that PRIME improves 

AERMOD's performance. However, evaluations conducted on a pilot scale in the Uttenweiller experiment, which 

took place in a wind tunnel, showed that PRIME has shortcomings when used in buildings with complex geometry 

such as in this case (Figure 1). PRIME considers the Uttenweiller constructions as a single rectangular flat obstacle, 

since this algorithm uses only the projected height and width. It is likely that these are the reasons why substantial 

improvements were not observed with the use of PRIME in AERMOD in the Uttenweiller test.  

 

Unlike what was observed in tests using the Round Hill II database, the implementation of σ୴ did not show a 

positive effect on the estimates of σ୷ in Uttenweiller. It is clear that statistical indexes for estimating σ୷, mainly 

bias and FB, are better when measurements of σ୴ are not assimilated. In this case, it is likely to be a compensation 

of errors in the estimates of σ୴ and σ୷ by AERMOD. According to Table 3, AERMOD underestimates σ୴ by about 

18% and 13% for 10-second and one-minute average times, respectively. On the other hand, AERMOD has a 

tendency to overestimate observations because of the reduction of averaging times, as mentioned in Section 4.1. 

That is, the underestimation of σ୴ by AERMOD compensates the amount by the model often overestimates σ୷ for 

averaging times shorter than 10 minutes. The bias reduction in AERMOD while estimating observed one-minute 

averages of σ୷ (6.68 meters) in relation to 10-second observations (1.63 meters) reinforces the above-mentioned 

premise.  

 

Figure 3 shows an example of vertical concentration profile of the simulations using AERMOD in Uttenweiller, A) 

with estimated standard deviation of wind velocity and without PRIME, B) with estimated standard deviation of 

wind velocity and with PRIME, C) with measured standard deviation of wind velocity and without PRIME, D) 

with measured standard deviation of wind velocity and with PRIME. In this illustrative example, the estimated 

values of σ୴ is smaller than the measured, providing greater concentrations due to the subestimation of σ୷ values. 

With the implementation of the PRIME algorithm, a small change on plume shape is visualized. Greater ground 

concentrations were reproduced due to the influence of the obstacles, considered by the PRIME. As represented in 

Figure 4, similar results were found on the horizontal profile of the plume simulated by the AERMOD in respect of 

the same conditions mentioned before. Due to the subestimation of the σ୷ (in consequence of the subestimation of 
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σ୴), the plume reached greater distances and reduced spread. With PRIME, the plume gets even larger distances 

and smaller spread, probably due to the cavity zone effect considered by the model. 

 

<Approximate location of Figure 3> 

 

<Approximate location of Figure 4> 
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5. CONCLUSION  

The use of turbulence observations as input data in AERMOD promoted a substantial improvement in the estimates 

of that model. Deviations of lateral wind speed (σ୴) were overestimated by AERMOD in the Round Hill II 

experiment because of errors in input data and/or turbulence parameterizations. For this reason, the bias value 

relative to  the 10-minute average σ୷ was reduced from 15.47 to 2.74 meters by incorporating measurements of σ୴. 

The propagation of errors in the estimation of σ୴ led to a substantial increase in systematic errors of the 

measurements of σ୷ and C୫ୟ୶. 

 

Even with the benefits afforded by observations of σ୴, the model overestimated lateral spread by 70%  and 

underestimated maximum arc concentrations for 30-second averages by 126%. This discrepancy is attributed to the 

difficulty of predicting the plume spread in short average times, since AERMOD was developed to produce 

estimates with average times over 10 minutes.  

 

This assessment also showed that errors in estimating σ୷ also emerged as a function of distance from the source. 

These errors may have originated from the parameterization of σ୷, as well as from the way in which AERMOD 

includes the meandering effect of the plume's center. This result highlights the need for adjustment of the 

dispersion coefficients and removal of the bias. In AERMOD the meandering effect is added to lateral dispersion. 

Therefore, turning off  the plume meandering treatment in odor and toxic dispersion situations could be envisioned 

as a possibility to reduce the bias. 

 

When the model was tested under Uttenweiller experimental conditions, compensation of errors was verified by 

AERMOD's parameterizations of σ୴ and σ୷. This compensation provided a better model performance without the 

assimilation of measured values of σ୴. Analysis confirmed that the quality of estimates of σ୴ directly influences the 

determination of σ୷. In Uttenweiller, whereas σ୴ was underestimated by the model, the function f ቀT tൗ ቁ probably 

overestimated the observations, compensating the errors in σ୷ estimates. 

 

The use of the PRIME algorithm produced a small improvement in the AERMOD under Uttenweiller experiment 

conditions. According to Vieira de Melo et al. [4], the complex geometry of the Uttenweiller building (Figure 1) is 

not perfectly handled by the model, which deteriorated the performance of the AERMOD-PRIME configuration. 
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The results presented by this work can be useful to analyze the CALPUFF model results which have a similar 

approach to AERMOD to calculate the lateral and vertical dispersion of the plume. AERMOD and CALPUFF 

dispersion coefficients (σ୷ e σ) were designed and calibrated to calculate hourly concentrations. Therefore, both 

models share a weakness: the inability to calculate short-term time averages, as in the case of flammability, 

malodour nuisance and, often, toxicity [4,5]. According to Hoinaski et al. [32], the methods of lateral dispersion 

coefficients employed on AERMOD and CALPUFF reached a strong correlation with observed maximum 

concentrations and lateral dispersion. However, their estimates are biased and the magnitude of systematic errors 

tend to grow as the averaging time decreases. 

 

The results presented by this work can be useful to analyze the CALPUFF estimates, because this model has a 

similar approach to AERMOD to calculate the lateral and vertical dispersion of the plume. AERMOD and 

CALPUFF dispersion coefficients (σ୷ e σ) were designed and calibrated to calculate hourly concentrations. 

Therefore, both models share a weakness: the inability to calculate short-term time averages, as in the case of 

flammability, malodour nuisance and, often, toxicity [4,5]. According to Hoinaski et al. [32], the methods of lateral 

dispersion coefficients employed on AERMOD and CALPUFF reached a strong correlation with observed 

maximum concentrations and lateral dispersion. However, their estimates are biased and the magnitude of 

systematic errors tend to grow as the averaging time decreases. 

 

 

In order to achieve good results in averaging times of less than 10 minutes, it is necessary to make adjustments in 

parameterizations of σ୷ and the effect of plume meandering in AERMOD. These adjustments could assist the 

model's performance optimization, when it is necessary to anticipate concentrations in short periods (seconds), as in 

the case of toxic pollutants and odorous emissions. 

 

Despite of important findings found by this work, there are some concerns about the present evaluation, due to the 

limited databases that are available for investigating the effects of AT. The development of a more robust dataset 

that comprises various atmospheric conditions, distances and ATs would allow for finding a more consistent 

analysis.   
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TABLES 

Table 1: Mean statistical indexes between observations and estimates of σ୴ for the Round Hill II experiment. 

Index Value 

BIAS (m.s-1) 0.53 

FB 0.56 

NMSE 0.25 

ρ 0.98 

FACT2 0.70 

MAE 0.53 

n 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Statistical indexes of the comparison among observations at different average times in Round Hill II and 

simulations with AERMOD using estimated and measured σ୴ in the respective experiments. 

Index Average time AERMOD ોܡ AERMOD ۱ܠ܉ܕ 
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σ୴ measured σ୴ modeled σ୴ measured σ୴	modeled 

BIAS 

(m) 

10 min 2.7 15.5 -96.9 -114.3 

3 min 7.2 20.0 -129.0 -147.3 

0.5 min 11.0 23.7 -151.1 -169.0 

FB 

10 min 0.22 0.67 -1.15 -1.51 

3 min 0.45 0.88 -1.26 -1.59 

0.5 min 0.71 1.10 -1.26 -1.59 

NMSE 

10 min 0.02 0.40 2.52 8.08 

3 min 0.20 0.94 3.14 9.42 

0.5 min 0.59 1.68 3.88 11.11 

ρ 

10 min 0.81 0.69 0.93 0.86 

3 min 0.84 0.79 0.94 0.89 

0.5 min 0.74 0.78 0.90 0.85 

FACT2 

10 min 0.77 0.40 0.07 0.03 

3 min 0.70 0.20 0.03 0.00 

0.5 min 0.40 0.03 0.10 0.00 

MAE 

10 min 6.8 17.4 96.95 114.31 

3 min 7.7 20.0 128.99 147.33 

0.5 min 11.0 23.7 151.12 169.04 

 

 

 

 

Table 3: Statistical indexes of the comparison of observed and estimated σ୴ values by AERMOD in average times 

of 10 seconds and one minute. 

Index 
ોܞ 

10 seconds 

ોܞ 

1 minute 

Bias -0.09 -0.07

FB -0.18 -0.13
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NMSE 0.02 0.01

ρ 0.23 0.60

FACT2 0.83 1.00

MAE 0.26 0.15

n 120 20
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Table 4: Statistical indexes among observations of lateral dispersion in Uttenweiller every 10 seconds and one 

minute.  

Index 

10-second average 1-minute average ોܡ ોܡ+ PRIME ોܡ ોܡ+ PRIME 

Measured ોܞ Estimated ોܞ Measured ોܞ Estimated ોܞ Measured ોܞ Estimated ોܞ Measured ોܞ Estimated ોܞ 
BIAS (m) 6.68 5.92 6.43 5.31 1.63 -1.34 4.09 0.62

FB 0.42 0.30 0.34 0.24 0.17 -0.01 0.15 -0.01

NMSE 0.15 0.12 0.14 0.11 0.01 0.01 0.05 0.00

ρ -0.17 -0.04 0.01 0.07 0.08 0.13 0.16 0.27

FACT2 0.61 0.54 0.60 0.60 0.85 0.85 0.69 0.85

MAE 9.49 10.59 10.06 10.64 6.34 5.67 10.31 8.80
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FIGURE CAPTIONS 

Fig 1: Obstacles in Uttenweiller experiment. Position of the buildings in relation to the geographic north (centered 

in the chimney), plan view and cuts. Source: adapted from Vieira de Melo et al. (2012). 
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Fig 2: Fractional bias (FB) among observations and estimates of lateral dispersion 50, 100 and 200 meters for 

Round Hill II experiment in 0.5, 3 and 10-minute average times. The bars indicate the standard deviation of FB and 

the values in red indicate FACT2. 
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Fig 3: Vertical profile of the AERMOD simulation using estimated and measured values of σ୴, with and without 

implementation of PRIME.  
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Fig 4: Horizontal profile of the AERMOD simulation using estimated and measured values of σ୴, with and without 

implementation of PRIME.  
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