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Epidemiological studies have documented that elevated airborne particulate matter (PM) concentrations, especially those
with an aerodynamic diameter less than 10 μm (PM10), are associated with adverse health effects. Two receptor models,
UNMIX and positive matrix factorization (PMF), were used to identify and quantify the sources of PM10 concentrations
in Tubarão and Capivari de Baixo, Santa Catarina, Brazil. This region is known for its high pollution levels due to intense
industrial activity and exploitation of natural resources. PM10 samples were collected using high volume samplers at two
sites in the region and statistical exploratory analysis techniques were applied to identify and assess PM10 sources. The two
primary PM10 sources were identified as soil re-suspension/road dust emissions and coal burning emissions, contributing
65–75% and 15–25% of the PM10, respectively. The study confirmed the significance of the influence of local PM10 emissions
(power plants, soil re-suspension and road dust emissions) on regional air quality, although no violations of the Brazilian
PM10 standards (limit of 150 μg/m3) were observed, with a mean concentration of 27.6 μg/m3 measured in this study. This
study demonstrated the usefulness of statistical exploratory analysis techniques in assessing the validity of modelling results
and contributing to the interpretation of ambient air quality data.

Keywords: air pollution; PM10; statistical exploratory analysis; UNMIX; PMF

1. Introduction
Airborne particulate matter (PM) can be emitted to the
atmosphere by a wide range of natural and anthropogenic
sources. Elevated concentration of coarse particles, partic-
ularly those with an aerodynamic diameter less than 10 μm
(PM10) has been associated with adverse health effects in
local and regional communities. [1–4] Numerous epidemi-
ological studies have shown an increased morbidity and
mortality due to elevated PM10 concentration. [5–8] In addi-
tion, atmospheric aerosols are implicated in a variety of
environmental problems including acid rain, reduced vis-
ibility, modification of the earth’s radiative balance and
changes in cloud properties. [6]

PM properties (size and chemical composition) are a
function of emission source, atmospheric reactions and
meteorological conditions. Generally, coarse airborne par-
ticles are composed of inorganic components (sulphates,
nitrates, ammonium, chloride and trace metals), elemen-
tal and organic carbon, biological components (bacteria,
spores and pollens) and adsorbed volatile and semi-volatile
organic compounds. [5] PM10 originates from both anthro-
pogenic and natural sources. Combustion processes such as
motor vehicle emissions, fossil fuel burning, industrial pro-
cesses and biomass burning are the dominant anthropogenic

∗Corresponding author. Email: leohoinaski@gmail.com

sources of PM10, [9,10] while significant natural sources of
PM10 include volcanic emissions and sea spray. [9]

According to Hopke [11] and Gildemeister et al. [7],
the management of air quality is a difficult problem that
involves the identification of emission sources of inter-
est, estimation of emission rates and understanding the
atmospheric transport of the substances and chemical and
physical transformation during transport. Emission source
identification and evaluation is a critical step in develop-
ing effective management strategies and ultimately reducing
environmental PM10 concentrations. [6]

Existing research efforts have focused on the devel-
opment of techniques to identify PM10 sources, [9,12]
including analyses of spatial and temporal PM concen-
tration variations to identify dominant emission sources
and provide a greater understanding of transport. Recep-
tor models, which attribute pollution to sources through
statistical interpretation of data, are also a useful tool to
support such an analysis. [3,11,13–15] These models focus
on the behaviour of the ambient environment at the point of
impact and have been used to unravel the contributions of
sources to observed ambient PM10 concentrations. [16] The
most commonly used receptor models are available via the
United States Environmental Protection Agency (USEPA):

© 2013 Taylor & Francis
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2 L. Hoinaski et al.

the chemical mass balance; UNMIX; positive matrix fac-
torization (PMF) and also principal component analysis
(PCA). [17,18]

Pollution (concentration) roses are another technique to
identify PM sources. This approach consists of evaluating
variations of meteorological conditions and PM concentra-
tions through graphical interpretation. Such an approach
allows, over a long period, the determination of the geo-
graphical origin and relative importance of PM sources
affecting each site. [19–21]

The combination of graphical interpretation analysis and
receptor modelling (PMF and UNMIX were the receptor
models utilized in the study) has the potential to pro-
vide improved identification and prioritization of pollutant
sources impacting ambient air quality. The objective of this
study is to assess this technique using ambient air quality
data for a region where a more conventional source identi-
fication study has been previously conducted (to provide a
basis for comparison).

The southeast region of the state of Santa Catarina,
Brazil, is known for its high pollution levels due to intense
industrial activity and the exploitation of natural resources.
[22] The largest coal burning thermoelectric complex in
Latin America, the Thermoelectric Complex Jorge Lac-
erda (TCJL), is located in this region. This thermoelectric
complex consists of seven power plants with a total capac-
ity of 832 MW that consume approximately 2.9 × 106 tons
of coal per year. The TCJL power plant has electrostatic
precipitators operating at approximately 98% efficiency to
remove the particulates in the gaseous effluent. To promote

dispersion, the emissions are discharged from two stacks
(100 m and 200 m, respectively). [22] Despite these mea-
sures, local government and community groups remain
concerned about the impact of PM on the public health of
residents in the south area of Santa Catarina.

To date, only one study has been completed in this region
to identify principal air pollution sources. [22] Godoy et al.
[22] utilized a purely statistical method consisting of PCA.
A limitation of this approach (and other receptor models)
was the inability to distinguish between spatially and tem-
porally correlated sources, such as vehicular and road dust
sources, which are perceived as a single source because
they almost always impact the receptor at the same time. As
the road dust is re-suspended in the air, the motor vehicle
passes over the road. [11] Furthermore, PCA can assume
several valid statistical results without physical meaning.
This study investigated the principal sources of PM10 in
this region to estimate the contribution of the TCJL and
other sources to local and regional atmospheric PM10 load-
ing and compare these results with those of the previous
PCA-based study.

2. Material and methods
2.1. Sampling and analysis
PM10 concentration data were collected in the cities of
Tubarão and Capivari de Baixo in the state of Santa
Catarina using two high-volume air samplers (AGVMP10;
Energética Qualidade do Ar, Brazil) equipped with a PM10

Figure 1. Sampling station location and wind rose.
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Environmental Technology 3

cut-off inlet to collect particulate samples on a fibre-
glass filter (0.6 μm pore size; 20.3 cm × 25.4 cm). Soil
re-suspension, road dust, marine spray, biomass burning
and TCJL emissions are the most probable sources of PM10
at Tubarão. The locations of the sampling stations were
selected based on the wind frequency (Figure 1) and the
distance between the sampling points was less than 8 km. A
total of 82 samples were collected between December 2008
to December 2009, with 55 samples collected in Tubarão
and 27 in Capivari de Baixo. The flow (around 100 m3/h)
and time (around 24 hours) of sampling were regulated
by the sampling device AVG-PM10 (Energética Qualidade
do Ar).

A meteorological station (Davis Vantage PRO 2, USA)
was installed in Tubarão at the PM sampling station to
provide rain, wind direction, wind intensity, temperature,
humidity and atmospheric pressure data. The installa-
tion was located on top of a tower (approximately 20 m
above ground level) with a 360◦ unobstructed horizon and
unrestricted exposure to the meteorological parameters of
interest.

PM10 mass concentrations were obtained through gravi-
metric analysis using an electronic micro balance (AY 220;
Shimadzu, Japan). PM10 concentrations were determined
by the mass rate (collected on fibreglass filters) and volume
(regulated by the flow times and the sampling time).

A subset of 50 samples (28 from Tubarão and 22 from
Capivari de Baixo) were selected randomly and analysed
for metals. The fibreglass filters containing the PM were
dissolved in high-purity HNO3 and H2O2 using microwave
digestion (Microwave Oven ETHOS PLUS-Sorisole, Italy)
in closed Teflon vessels. The resultant solution was then
diluted in 50 mL of ultra-pure water to optimize detection.
The concentration of arsenic (As), lead (Pb), cadmium (Cd),
chromium (Cr), manganese (Mn), mercury (Hg) and nickel
(Ni) were determined using a PerkinElmer ELAN 6000
ICP-MS instrument (PerkinElmer, USA). To improve accu-
racy and precision of the analysis, the system was operated
in full quantitative mode. [22,23] The detection limits are
based on a 98% confidence level (3 SD).

2.2. Statistical exploratory analysis
A statistical exploratory analysis approach was utilized
to investigate and characterize the main meteorological
influences on the PM10 concentrations. Spearman’s non-
parametric correlations were employed using MATLAB®

(MathWorks Inc, USA) and Statistica® (Statsoft, USA) to
verify the meteorological relationships for the PM10 con-
centrations at Tubarão and Capivari de Baixo. Pollution
roses were applied for graphical interpretation to identify
the most polluted wind direction. This approach allowed
for the determination of the geographical origin and rela-
tive importance of the pollution sources affecting each site.
[19,20,24]

2.3. Receptor models
The receptor models UNMIX 6.0 (USEPA, USA) and PMF
3.0 (USEPA, USA) were applied to the Tubarão and Capi-
vari de Baixo data in order to estimate the source profiles
and contributions. These locations were modelled in a sin-
gle domain due to their proximity and similar pollution
sources. The fundamental principle of receptor modelling is
that mass conservation (Equation (1)) can be assumed and a
mass balance analysis can be used to identify and apportion
sources of airborne PM in the atmosphere [11,25]:

xij =
p∑

p=1

gipfpj + eij (1)

where: xij is the measured concentration of the jth species
in the ith sample; fpj is the concentration of the jth species
in the material emitted by the source p; gip is the contribu-
tion of the measured ith sample and eij is the portion of the
measurement that cannot be fitted by the model.

UNMIX solves the mass balance problem by utilizing
an assumption that the data at the receptor site are a lin-
ear combination of an unknown number of sources with
unknown chemical profiles. [13,15] The model uses a new
transformation method based on self-modelling curve res-
olution (SMCR) techniques. Since a unique solution is not
possible, the SMCR technique restricts the feasible region
of the real solution into a small region with explicit phys-
ical constraints, such as requiring source compositions to
be greater than or equal to zero. Further description of this
model can be found in Hopke [11] and USEPA. [17]

In both the PMF and UNMIX receptor models, sources
are constrained to have non-negative species concentration
and no sample can have a negative source contribution.
[15] The primary difference between the PMF and UNMIX
models is that the PMF model considers the uncertainties
in the measured variables. PMF takes the approach of an
explicit least-squares approach, in which the method mini-
mizes the ratio established between residual modelled and
analytical error (Equation (2)) with the constraint that each
of the elements of g and f is to be non-negative [11]:

Q =
n∑

i=1

m∑
j=1

(
xij − ∑p

p=1 gipfpj

)2

s2
ij

(2)

where Q is the ratio between residual modelled and analyt-
ical error and sij is an estimative of the uncertainty in the jth

variable measured in the ith sample. [11,17,18]
In this study, eight variables were measured; however,

the number of species used in the models was reduced to
seven (PM10, As, Mn, Ni, Cr, Pb and Cd) due to the Hg
concentrations being below the analytical detection limit.
These metals were chosen based on previous work con-
ducted in the area (Evaluation of the environmental quality
of the coal basin in Santa Catarina). [22] For the variables
applied, no detrimental points (i.e. extreme outliers and/or
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4 L. Hoinaski et al.

Table 1. Average PM10 and species concentrations measured at the two sites.[1]

Number of Mean ± SD Min Max MRL Detec.
Site Parameter samples (ng/m3) (ng/m3) (ng/m3) (ng/m3) Limitsa (ng/m3)

Tubarão PMb
10 55 27.62 ± 11.14 8.44 60.03 150c 1

Mn 28 21.04 ± 0.22 6.0 52.0 3000 4.70
Ni 28 2.5 ± 0.06 0.25 13.0 90 1.11
As 28 3.23 ± 0.10 – 16.0 5000 2.45
Cd 28 0.35 ± 0.03 – 1.3 10 0.17
Pb 28 12.73 ± 0.16 3.8 38.0 1000 3.66
Cr 28 8.13 ± 0.57 – 24.58 300 2.45
Hg 28 0.020 ± 0.001 – 0.11 200 0.07

Capivari de Baixo PMb
10 27 22.99 ± 10, 44 4.19 48.23 150c 1

Mn 22 19.72 ± 0.07 7.1 44.0 3000 5.44
Ni 22 2.18 ± 0.10 0.52 7.6 90 1.14
As 22 3.48 ± 0.02 0.06 13.4 5000 2.99
Cd 22 0.34 ± 0.17 – 0.77 10 0.12
Pb 22 14.31 ± 1, 7 01.8 39.0 1000 5.20
Cr 22 8.29 ± 0.01 0.45 38.0 300 3.61
Hg 22 0.040 ± 0.001 – 0.24 200 0.18

Notes: MRL = minimal risk level. [26]
aAverage detection limits (3 SD of each sample).
bConcentrations in μg/m3.
cBrazilian and USA national ambient PM10standards in μg/m3. Not to be exceeded more than once per year on average over
3 years.

concentrations below the detection limit) were identified;
therefore, all data points were included in the modelling.

3. Results and discussion
3.1. Statistical exploratory analysis
The average PM10 concentrations and corresponding chem-
ical composition during the sampling period at the two sites
are shown in Table 1. The average PM10 concentrations
for the entire sampling period was 27.62 ± 11.14 μg/m3 in
Tubarão and 22.99 ± 10.44 μg/m3 in Capivari de Baixo.
During the sampling periods, no exceedance of the Brazilian
PM10 standards (150 μg/m3), the USEPA PM10 standards
or the minimal risk level for hazardous substances listed
by the Agency for Toxic Substances and Diseases Registry
were observed.

Observed PM10 concentrations were similar at the two
sampling sites during the monitoring period (Figures 2
and 3), suggesting a strong similarity between the source
of the particle emissions at the sampling sites. The slightly
higher PM10 concentration at Tubarão could be associated
with its larger population and higher level of urban activity
(96,529 inhabitants compared to 19,934 inhabitants in Capi-
vari de Baixo) resulting in increased PM10 emissions from
road dust and soil re-suspension. As seen in Figure 1, the
wind directions from the northeast and east are the most
frequent, suggesting that the particulate emissions from
the TCJL are most likely impacting Tubarão. However, if
the TCJL strongly contributed to the PM10 emissions in
Tubarão, the concentration of PM10 at both sites should not
be similar, as previously observed by Godoy. [22]

As data for other meteorological parameters such as
atmospheric stability, solar radiation and cloud cover were
not directly available, their influence could not be evalu-
ated. Data from meteorological models would be required
to obtain these parameters.

While the spatial PM10 concentration variations
appeared to be low, significant temporal variations were
observed at the two sampling sites, with the greatest PM10
variability being observed during autumn (March to June),
winter (June to September) and spring (September to
December). These seasons are the drier seasons, with a rel-
atively lower frequency of rain, which favours atmospheric
accumulation of pollutants. The highest PM10 concentra-
tions were also observed during these seasons. The large
concentration increase during the summer of 2010 is due
to the small pool of data that coincided with high concen-
tration events that are not expected to be representative of
typical summer conditions.

No significant chemical composition differences were
observed between the PM10 collected from both sampling
sites (Figure 4). The concentration of Mn and Pb were found
to be the highest in the PM. While the PM was analysed for
Hg, many samples were below the method detection limit
(0.07 and 0.18 ng/m3).

A non-parametric correlation (Spearman ranking)
between the meteorological data and the PM10 concen-
trations at Tubarão and Capivari de Baixo is presented in
Table 2. As expected, rain (mm/day) was the meteorologi-
cal parameter with the strongest correlation to the measured
PM10 concentrations at the two sampling sites. Other daily
average meteorological parameters (with the exception of
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Environmental Technology 5

Figure 2. PM10 concentration observations at Tubarão and Capivari de Baixo. Precipitation in mm/day during the sampling date. Wind
direction (arrowhead indicates wind provenance) and daily average speed (arrow size indicates the intensity). Sampling camping frequency
was not equispaced.

wind speed and direction) did not have a strong correlation
with the observed PM10 concentrations. The relationship
between wind speed and PM10 concentration is not yet fully
understood and, as noted by Weiner and Matthews, [27] a
more frequent and longer sampling period could be needed
to explore this relationship further.

The pollution roses (Figure 5) indicated that the winds
from the east-northeast (ENE) direction resulted in the high-
est PM10 concentrations at Tubarão and Capivari de Baixo.
The winds from the ENE are already moderately polluted
(with PM10 up to 40–50 μ g/m3) before reaching Capivari
de Baixo and the atmospheric PM10 concentration of this
ENE wind increased after it passed through the cities of
Capivari de Baixo and Tubarão(PM10 up to 60–70 μg/m3).

Wind events with high PM10 concentrations arriving in
Capivari de Baixo are likely a result of the drier nature

of wind from the North, Northeast and ENE directions.
Under a prevailing ENE wind, suspension of soil par-
ticulates, TCJL emissions and other emissions related to
urban activities could contribute to the observed increase in
PM10 concentration in wind reaching Tubarão after pass-
ing through Capivari de Baixo. In particular, the up-wind
(during the prevailing ENE winds) location of the coal-fired
TCJL power station relative to the city of Tubarão (Figure 1)
could contribute to increase the PM10 levels. However, the
PM10 measured concentration at both sites did not suggest
a significant impact of the TCJL. The origin of the pollu-
tion sources remains unclear. A longer sampling campaign
could help to explain the uncertainties.

As shown in Figure 5, winds from the southern quad-
rant had much lower PM10 concentrations relative to
ENE winds. In this region, southern winds are commonly
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6 L. Hoinaski et al.

Figure 3. Seasonal variations in PM10 concentrations at in
Tubarão and Capivari de Baixo. Summer (from December to
March), autumn (from March to June), winter (from June to
September) and spring (from September to December).

Figure 4. PM10 chemical composition during the sampling cam-
paign at the two sites. Average concentrations of the analysed
samples during the sampling campaign.

accompanied by cold fronts and rain in the south of Santa
Catarina; therefore, a southerly wind direction is apparently
less favourable for PM10 air pollution, probably due to rain
deposition of suspended particulates.

3.2. Source apportionment by UNMIX and PMF
Previous work by Godoy et al. (2005) identified sea spray
as a significant source of the coarse fraction of the PM10
(35–82% of the amount of PM2.0−10) at the studied site,
but not for the fine particles. Soil re-suspension (13–42%),
followed by TCJL emissions (5–15%) and road dust (5–
8%) are the other PM2.0−10 potential sources suggested by
Godoy. [22]

3.2.1. UNMIX
The UNMIX model was applied to the PM10 chemical com-
position dataset (with the exception of Hg). Since UNMIX is
unable to perform these calculations using only two sources,
the modelling was performed using three source apportion-
ments. The overall particulate matter (PM10) concentration
predictions compared well with the measured data, with a
coefficient of determination (r2) of 0.72 (Figure 6).

Two sources (soil re-suspension and TCJL) accounted
for 81.5% of the original dataset covariance, while the third
source only accounted for 0.5%. The magnitude of the third
source did not allow its identification, even though it con-
tributed approximately 40% of the Ni concentration. The
normalized source profiles found in the present work are
presented in Table 3.

The first source had the largest contributions to ambient
PM10 and Pb levels and was also responsible for approxi-
mately 80% of the PM10 and 40% of the ambient Mn. It is
likely that this source was associated with soil re-suspension
and road dust emissions, as described previously by Godoy.
[22] Emissions arising from road vehicles are generally con-
tributed by a mix of tailpipe emissions, wear and tear of
brakes and tyres and re-suspension of road dust. Genuine
overlaps in chemical composition between soil and road
dust are common in urban regions. [28]

The second source was similar to the TCJL emission
profile, with significant contributions from the measured
Cr, Pb, As, Cd, Ni and Mn concentrations. Overall, source
2 contributed approximately 20% of the measured PM10
concentration, which was in agreement with the results
modelled using PCA by Godoy. It was not possible to
identify source 3 due to limitations in the data, a greater
number of samples and additional analysed species would
be required to complete the identification.

Table 2. Spearman-rank non-parametric correlation between meteorological data and PM10 concentrations in
Tubarão and Capivari de Baixo.

Temperature
Location Mean (◦ C) Max (◦ C) Min (◦ C) Rain (mm) ATM pressure (hPa) RH (%)

PM10 - Tubarão 0.11 0.21 0.04 −0.43 0.01 −0.20
PM10 - Capivari 0.23 0.36 0.11 −0.54 −0.09 −0.31

Notes: ATM = atmospheric; RH = relative humidity.
Statistical significance of 5%.
Numbers in bold indicate valid statistical correlation. All parameters were computed as daily averages.
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Environmental Technology 7

Figure 5. PM10 pollution roses in Tubarão (a) and Capivari de Baixo (b). PM10 concentrations in μg/m3 and wind direction. Frequency
of the concentration events in percentage.

Figure 6. Comparison between observed and modelled time
series by UNMIX for PM10 concentration.

Table 3. Source profiles modelled by UNMIX.

Source 1 Source 2 Source 3
Soil re-susp TCJL Unknown

Element (ng/m3) (ng/m3) (ng/m3) (r2)

PMa
10 17.40 4.23 0.84 0.72

Mn 8.34 10.8 1.13 0.85
Ni 0.01 1.40 0.94 0.99
As 0.00 3.43 0.07 0.81
Cd 0.15 0.21 0.01 0.66
Pb 7.45 6.29 0.07 0.58
Cr 0 9.17 0 0.84

Notes: re-susp = re-suspension.
aConcentrations in μg/m3.

3.2.2. PMF
The PMF model was applied to the same dataset used for
the UNMIX modelling, with the normalized source pro-
files presented in Table 4. The model had good predictive
capacity for PM10, Mn, Pb and Cr (Table 4); however, the
Ni concentration predictions were poor (r2 = 0.37).

Table 4. Source profiles modelled by PMF.

Source 1 Source 2 Source 3
Soil re-susp TCJL Unknown

Element (ng/m3) (ng/m3) (ng/m3) (r2)

PMa
10 15.77 0.00 5.83 0.74

Mn 11.1 5.34 3.47 0.96
Ni 1.22 0.88 0.16 0.37
As 0.53 2.58 0.00 0.58
Cd 0.15 0.14 0.01 0.52
Pb 2.66 0.01 10.5 1.00
Cr 0.00 7.71 0.10 0.97

Notes: re-susp = re-suspension.
aConcentrations in μg/m3.

The predicted contribution of each of the three sources
using the PMF model was similar to those obtained using
UNMIX (Tables 3 and 4). This was as expected due to the
similar approaches utilized by the models. [11] According
to Hopke, [11] in most cases, the source profiles are similar
and, despite some discrepancies, Poirot et al. [29] also con-
cluded that sources identified by UNMIX and PMF were
similar.

Source 3 did not contribute sufficiently to explain the
variation in the data, similar to the UNMIX modelling.
However, source 3 appears to be the main contributor to Pb
emissions and about 25% of PM10, suggesting that another
localized and/or unidentified sources exist. The absence of
elements such as Fe, magnesium (Mg), silica (Si), sodium
(Na) and other organic and inorganic species could lead
to the models being insensitive to other particulate emis-
sions sources at Tubarão and Capivari de Baixo. Source 2
(TCJL emissions) did not appear to have any significant
contribution to the measured PM10 concentrations, but it
has a significant contribution to the concentration of metal-
lic elements. The differences between the UNMIX and PMF
results, especially for Ni and Pb concentrations, could not
be explained within the context of this study.
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8 L. Hoinaski et al.

Figure 7. Tubarão and Capivari de Baixo Map, TCJL position related to the cities and pollution roses of respective cities located under
the sampling points.

3.3. Application of pollution roses to receptor
modelling results for source identification

The pollution roses (Figure 5) showed similar conclusions
to the UNMIX and PMF modelling results. Under north
or northeast winds, the air had already gained the majority
portion of the PM10 before it reached the city of Capivari de
Baixo and it is most likely that this PM10 (40–50 μg/m3)

originates from soil re-suspension and road dust emis-
sions (source 1) since there is no other major urban area
(only small cities) within 100 km. In his study, Hopke [11]
also comment that airborne concentrations due to specific
sources may display a sharp directional pattern with regard
to wind direction.

The smallest representative component of the PM10 was
predicted (by UNMIX and PMF) to originate from the TCJL
emissions. After passing through the cities of Capivari de
Baixo and Tubarão, the PM10 concentration in the air under
North, Northeast or Easterly winds increases, according to
the pollution roses (Figure 5). As the TCJL (Figure 7) is
located between these cities, it is most probably the cause
of the increase in the PM10 concentration (0–10 μg/m3),
indicated by the darkening on the Tubarão pollution rose
under an ENE wind direction.

3.4. Comparison with previous study
In Figures 8 and 9, the soil re-suspension and TCJL profiles
determined using the UNMIX and PMF models are com-
pared with the results obtained by Godoy [22] in the 2001

Figure 8. Soil re-suspension PM10 profile estimated by
UNIMIX, PMF and by Godoy et al. [22]
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study for the same sites. Godoy [22] used PCA modelling
to identify and quantify the principal sources of PM around
the TCJL, based on the analysis of up to 42 elements from
up to 120 results per element. After applying the model,
Godoy [22] identified four main sources; soil re-suspension;
TCJL emissions; sea spray; biomass burning.

Figure 9. TCJL PM10 profile estimated by UNMIX, PMF and
by Godoy et al. [22]

As the selected range of chemical elements did not
include those representative of sea spray and biomass burn-
ing sources (aluminium (Al), Si, black carbon (BC), Na,
chlorine, Fe, Mg) were not detected by the UNMIX and
PMF modelling in this study due to the chemical elements
not being determined. Organic, inorganic and metallic
traces elements such as BC, Na, Si, Mg, Al, titanium (Ti) can
represent a large mass amount of PM10 concentrations, and
their inclusion would improve the UNMIX and PMF mod-
elling results and allow identification of additional emission
sources. In some cases, PMF and UNIMIX leaves some of
the mass unexplained, as reported by Poirot et al. [13] and
Polissar et al. [29].

The obtained source profiles were compared with equiv-
alent source profiles for TCJL fly ash and local soil, [22]
with the results presented in Figure 10. In general, a good
agreement is observed, but the local soil profile hade lower
levels of Pb than the profile generated by UNMIX and PMF.
The TCJL fly ash profile was in good agreement with the
corresponding profile generated using the PMF model.

4. Conclusion
A combination of modelling (UNMIX and PMF)
and graphical interpretation methods were applied to

Figure 10. TCJL and soil profiles obtained by Godoy [22] compared to profiles reached by UNMIX and PMF. Profiles in mg/kg (left
axis) and UNMIX and PMF results in μg/m3 (right axis).
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identify dominant sources for measured ambient PM10
concentrations at two sites located in Tubarão and Capivari
de Baixo, Brazil. It should be noted that the total number
of samples was relatively small (50 samples); however, the
results of this study were in general agreement with those
obtained by Godoy, [22] which was based on a much larger
experimental study.

During the sampling periods, no exceedance of the
Brazilian PM10 and the USEPA PM10 standards were
observed. Based on the receptor models employed (UNMIX
and PMF), the TCJL contributions to the ambient PM10 con-
centrations were estimated to be between 0 and 20% at the
two monitoring sites, with the TCJL being identified as the
main source of As and Cd in the PM10. Soil re-suspension
appeared to be the main source (60–75%) of the ambient
PM10 at Tubarão and Capivari de Baixo. Additional analysis
with a larger dataset and the use of an expanded speciation of
the organic and inorganic PM10 components would improve
the identification and quantification of PM10 sources.

Despite using a different methodology, models and a
reduced number of field samples, the study results confirm
those obtained by Godoy, [22] and demonstrate that regional
PM10 sources can have a significant impact on local PM10
concentrations. The study demonstrated that the receptor-
based techniques and statistical exploratory analysis are
useful tools in identifying PM10 sources and evaluating
their impact on ambient air quality, supporting the develop-
ment of defective management strategies and reductions in
environmental PM concentrations.
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